
Threads Programming on
AIX

David Klepacki, Ph.D.
IBM T.J. Watson Research Lab
Yorktown Heights, NY 10598

klepacki@us.ibm.com

What is a Thread
A thread:

Is an Independent Flow of Control

Operates within a Process with other threads

SPPRCN30

Process
A

Thread
1

Process
B

Thread 1

Thread 3

Thread 2

monothreaded process multithreaded process

What is a Thread

A thread has the following Properties:

It is a schedulable entity

It has scheduling properties such as policy and priority

It has its own stack and its own registers

It has a set of pending and blocked signals

It may have thread-specific data

SPPRCN30

Multithreading
Process

memory state
File state

Processor
state
program counter
stack pointer
Registers

Thread
Processor
state
program counter
stack pointer
Registers

Thread

Each thread has its own set of registers and its own stack

But:
They share memory
and file descriptors

What is a Thread cont...

When a process is created, a thread is
automatically created (initial thread)

The initial thread executes the main routine

There are user threads and kernel threads

A kernel thread runs within a process but can be referenced by other
system threads

A user thread in one process cannot access a user thread in another
process

In AIX User threads are mapped to kernel threads by the threads
library

This mapping is referred to as the threads model

SPPRCN30

Threads Scheduling
There are three possible thread models:

N:1 model

1:1 model (implemented on AIX 4.1, 4.2, and 4.3)

M:N model (implemented on AIX 4.3.1)

SPPRCN30

User Threads

Threads Library

Kernel Threads

Library scheduler

VP

** In the N:1 model all user threads are
mapped to one kernel thread; All user
threads run on a Virtual Processor (VP).

** This model can be used on any system,
especially on traditional single-threaded
systems.

N:1 Threads Model

Threads Scheduling (cont)

There are three possible thread models:

1:1 model (implemented on AIX 4.1, 4.2 and 4.3.0)

SPPRCN30

User Threads

Threads Library

Kernel Threads

VP

** In the 1:1 model all user threads are
mapped to a seperate kernel thread;
all user threads run on a pool of VPs

** This model can be used on any system,
especially on traditional single-threaded
systems.

** Creating, destroying, and switching
threads requires kernel involvement.

1:1 Threads Model

VPVP

Threads Scheduling (cont)
There are three possible thread models

M:N model (implemented on AIX 4.3.1)

SPPRCN30

User Threads

Threads Library

Kernel Threads

Library scheduler

VP

** In the M:N model some user threads can
be mapped onto a pool of kernel threads
as well as support 1:1 mapping.

M:N Threads Model

VP VP

Bound vs. Unbound Threads

A thread can be bound or unbound which determines the way it is scheduled..

1- Bound Threads: Bound threads are scheduled by the kernel. These
threads are said to reside in System Contention Scope and
implement the 1:1 model.

2- Unbound Threads: Unbound threads are scheduled by the threads
library and are said to reside in Process Contention Scope
and implement the M:N model.

Note: For parallel computing we always use bound threads.

Using pthreads, this can be set as a thread attribute.

pthreads library and libc

Threaded Applications

Reentrant C library
(libc_r)

pthreads library

C library (libc)

Kernel threads

User

Library

Kernel

How to Compile/Link?

A special stanza is provided in AIX in the configuration file:

/etc/xlC.cfg to allow easy compilation of threaded programs.

This stanza links the application with libc_r and libpthreads.a

Typical compilation may be done as follows:

cc_r -o exer1a exer1a.c

If not using /etc/xlC.cfg,

cc_r -o exer1a exer1a.c -lpthreads -lc_r

Terminology

What is thread safe?
Shared resources are protected from
concurrent access by locks

What is reentrant?
No static data is held over successive
calls
No pointers to static data are returned

Lifecycle of Posix Threads

Creating attributes
Initializing attributes
Creating threads

Destroying threads
Joining threads
Destroying attributes

Creating

Running

Ending

Using locks
Using condition variables

pthread_attr_init(&attr); // initialize with default values

detach state : detached (not joinable)
contention scope : process (not system)
inherit schedule : inherited (not fixed)
schedule priority : 1 (range 1-127)
schedule policy : other (not round-robin or fifo)

functions to control attributes:

pthread_attr_setdetachstate
pthread_attr_setscope
pthread_attr_setinheritsched
pthread_attr_setschedparam
pthread_attr_setschedpoilcy

Default Attributes (AIX 4.3)

Manipulating Thread Atttributes

pthread_attr_t attr; // a thread attribute
pthread_t tid; // thread id

pthread_attr_init (&attr); // initialize an attribute
// set an attribute value

pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_JOINABLE);

/* */

pthread_attr_destroy (&attr); // destroy thread attribute

Notes: ON AIX the default is PTHREAD_CREATE_DETACHED. The default
ensures that when the thread terminates, its storage is reclaimed by the
system. The attributes are only used when the thread is created, therefore, it
can be deleted at any time after the creation and doesn't have to wait for the
"join" operation to occur. For parallel computing, we must set attribute to
PTHREAD_CREATE_JOINABLE in order to synchronize parallel threads.

pthread_create()

int pthread_create (
pthread_t *tid, /* thread id filled in by the call to pthread_t */
const pthread_attr_t *attr, /* thread attributes */
void * (*start_routine) (void *), /* pointer to function */
void *arg /* argument to function */
};

Arguments:
1- The ID of the successfully created thread is returned in *tid.
2- attr specifies thread attributes (NULL for default values).
3- The new thread begins by executing start_routine().
4- arg is a pointer to the argument list for start_routine().

Return Values:
* 0 (zero) if successful. Error code otherwise (see <errno.h>).

Notes: Use a structure to pass multiple arguments to the start_routine.

Destroying Threads

There are three ways for threads to terminate:
Return from the start routine
call pthread_exit()
Get cancelled by another thread

void pthread_exit (void * *status); /* exit status */
*status is a pointer to the completion status of the destroyed thread.
This pointer value is made available to other threads.
There is no return value from this function.
When a thread is destroyed by returning from the start routine, the
thread's completion status is set to the return value.

pthread_join()
int pthread_join(

pthread_t tid, /* thread ID to wait for */
void **status /* exit status */
);

Arguments:
1- The ID of the thread to wait for
2- The completion status of the exiting thread will be copied into

*status unless status is NULL, in which case the completion
status is not copied.

Return value:
0 for success. Error code otherwise

Notes: Once a thread is joined its thread ID is no longer valid
and it cannot be joined with any other thread.

Creating and Joining Threads
#include <pthread.h>
void main () {

pthread_t tid[NUMBER_OF_THREADS];
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* Create threads */
for (i = 0; i < NUMBER_OF_THREADS; i++)

/* Each thread calls thread_main with parameter arg */
pthread_create (&tid[i], &attr, (void*(*) (void*)) thread_main, (void *) arg);

/* wait for threads to terminate */
for (i = 0; i < NUMBER_OF_THREADS; i++)

pthread_join (tid[i], NULL);
pthread_attr_destroy(&attr);

}

Note: Created threads are referred to as children and the creating thread
is referred to s the p rent

Mistake: Process Exit

#include <pthread.h>

void main () {
pthread_t tid[NUMBER_OF_THREADS];

/* create threads */
for (i = 0; i <NUMBER_OF_THREADS; i++)

/* each thread calls thread_main with parameter arg. */

pthread_create (&tid[i], NULL,(void*(*)(void*)) thread_main, (void *) arg);

exit(0);
}

This is wrong because when a process exits or returns from
main(), all the process's memory is destroyed and any running
threads are terminated.

Mistake: Dangling Pointer
void main() {

pthread_t tid;
int *status;

/* create a thread */
pthread_create (&tid, NULL, (void*(*)(void*))thread_main, NULL);

/* wait for thread to terminate */
pthread_join (tid, &status);

}
void thread_main () {

int errorcode;
/* do something */
/* if error condition detected, errorcode = something; */
pthread_exit(&errorcode):

This is wrong because errorcode is on the stack and will be freed
when the start routine exits.

Thread Destruction

child thread's stack just before
exiting:

start()

errorcode errorcode

child thread's stack after exiting

*status

Note: The thread's completion status is a pointer to automatic data that is
destroyed when the thread is destroyed, leading to a dangling pointer.

void parent () {
int *status;
int arg;

status = (int *) malloc (sizeof (int));
arg = 1234; // initialize arg

pthread_create (&tid, NULL, (void* (*) (void*)) child, &arguments);
pthread_exit((void*)status); // this exit frees the stack which contains the

// argument structure that is needed by the threads
// children

}
void child (int *arg) {

/* some processing */
}

Mistake:
Parent Exits Before Child

This is wrong because the parent stack is destroyed before its
children. This code needs a pthread_join() before exiting

struct args { // structures used to pass multiple arguments
int time;
pthread_t parent;
};

void parent () {
int *status;
struct args arguments;

status = (int *) malloc (sizeof (int));
arguments.time = 1234; // initialize args
arguments.parent = pthread_self();
pthread_create (&tid, NULL, (void* (*) (void*)) child, &arguments);
pthread_join(&tid, (void*) status);
pthread_exit((void*) status);

}
void child (struct arg * arguments) {

/* some processing */
}

Correct:
Parent Exits after Join

Sample problem - Serial Solution

1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1p

Count the number of "ones" in the array.

Sample problem
Count the number of ONES in an array

Serial Code:

int count=0, n=40;
int vector [40] = {1,0,1,0,1,1,1,0,1,1,1,0,1,1,0,0,1,0,1,1,

1,1,0,1,1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,1};
void main() {

count_ones();
printf("The value of count = %d\n", count);

}
void count_ones ()
{

int i, j;
for (j=0;j<1000000;j++) {

for (i=0; i < n; i++) {
if (vector [i] == 1)

count++;
}

}
}

n=40 million
count=25 million

Sample problem - Parallelization

p

Divide the array into regions
Create an equal number of threads to count the ones in each region
Assume that the array can be divided into equal size regions

Thread 1 Thread 2 Thread 3 Thread 4

1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1

Sample code
...
#define NUMBER_OF_THREADS 4
int count=0, n=40;

void count_ones (int id) {
int i, j;
int vector [40] = {1,0,0,0,0,1,1,0,1,1,1,0,0,1,0,0,1,0,1,1,

1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0,1}
/* Determine which portion of the array to work on */
int n_per_thread = n/NUMBER_OF_THREADS;
int start = n _per_thread * id;

/* count ones in region */
for (j=0;j<1000000;j++) {
for (i = start; i < start + n_per_thread; i++) {

if (vector [i] == 1)
 count++;

} }}

Note: This code provides great speedup..... but with incorrect answers!!

Data Races
A data race occurs when two or more threads are trying to modify the same
memory location at the same time.

Example: The statement count++ is actually 3 machine intructiones:

1- Load count in register
2- Increment register (count)
3- Store rigister into count

Thread1 Thread 2
Thread 3

-------------------- ----------------- ----------------
count = 0

load count
increment count load count

time store into count increment count
store into count

count = 1

Mutexes

A mutex is a data object (i.e: bit, byte, word, ..)

A mutex has 2 states: locked and unlocked

A mutex has 2 methods: lock and unlock

If a mutex is locked, a thread must wait until it is unlocked

Once a mutex is unlocked the thread can lock it.

If a thread is holding a mutex (lock) it has the exclusive right to
read/write the data controlled by the lock

SPPRCN30

Statically Allocated Mutexes
/* Declare and initialize a single lock */

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void safe_access (...) {
pthread_mutex_lock (&lock);

/* access some shared data or shared file critical section

*/
pthread_mutex_unlock (&lock);

}

,
Note: A mutex has attributes just as threads do. By declaring a
lock and initializing it to PTHREAD_MUTEX_INITIALIZER, we
get the default attributes.

Dynamically Allocated Mutexes
Parent code

pthread_mutex_t * lock ; // declare pointer to a lock

lock = (pthread_mutex_lock_t *) malloc (sizeof (pthread_mutex_t));
pthread_mutex_init (lock, NULL);

/* Create threads and wait for termination. */

pthread_mutex_destroy (lock);
free (lock);

Child Code:

pthread_mutex_lock (lock);

/* access some shared data or shared file */

Critical Section

pthread_mutex_unlock (lock);

Data Race Prevention

Mutual Exclusion:

Insure that count is accessed by one thread at a time

This condition is refered to as mutual exclusion

Incrementing count must be seen as an atomic operation

The time when a thread has mutual exlusive access of count
is called the critical section

Mutual exclusion is achieved by the use of a data object
called mutex

Solution - Data Race Solution
...
int count=0, n=40;
pthread_mutex_t lock =
PTHREAD_MUTEX_INITIALIZER;

void count_ones (int id) {
/* Declarations */
...
/* count ones in region */
for (j=0;j<1000000;j++) {
for (i = start; i < start + n_per_thread; i++) {

if (vector [i] == 1) {
 r = pthread_mutex_lock(&lock);
 count++;
 r = pthread_mutex_unlock(&lock);

}
}

}

Lock Contention Overhead

Serial Data Race Contention

Execution time in seconds
on a UNI processor.

n = 40 million
count = 25 million

1.83 sec

120 sec

1.88 sec

Contention Solution
Each thread counts in a private counter. Then the results
are combined at the end.

...
int private_count [4] = {0, 0, 0, 0}, final_count=0;

void count_ones (int id) {
/* Declarations */
...
/* count ones in region */
for (j=0;j<1000000;j++) {
for (i = start; i < start + n_per_thread; i++) {

if (vector [i] == 1)
 private_ count [id]++;

}
}

 r = pthread_mutex_lock(&lock);
 final_count += private_count [id];
 r = pthread_mutext_unlock(&lock);
}

What Happened?

n = 40 million
count = 25 million

Performance of 4
threads on a 4-way
SMP

Serial Data Race Contention ???

1.43 sec

120 sec

0.36 sec

4.47 sec

Caches and Performance
Typically there are 2 kinds of caches:

Instruction cache

Data cache

SPPRCN30

Finding needed data/instructions in the
cache positively effects performance.

For instructions, it is important to put functions that interact
close together (same file)

For data it is important to put related data in the same
structure.

On an SMP system, if the data is global, then its access
should be serialized.

On an SMP, global data whose access is not serialized
should not be close together.

Cache Consistancy

Processor 1

Cache
common_count [0]location 9500 }

Memory

00000001

Processor 2

Cache
common_count [0] }

1- Processor 1 and Processor 2 load the contents of memory location 9500
2- Processor 2 adds one to the contents of location 9500 which is in its cache
3- Processor 1 uses the contents of location 9500 which it finds in its cache

Inconsistent caches .. Problem

after step 2 this value is 00000002

location 9500 location 9500location 9500

location 9500

Maintaining Cache Consistency

Processor 1

Cachecommon_count [0]location 9500 }

Memory

location 9,500 common_count [0]

Processor 2

common_count [0] location 9500{

* Hardware Logic is added to each processor-bus Interface that:

- Broadcasts a message over the bus when cache is modified
- Snoops the bus looking for messages
- Invalidates a cache if data has been modified

* Snooping increases memory bus traffic
* Cache invalidations increases cache misses and negatively affects performance

Memory Address Bus

False Sharing/Cache Consistancy

Processor 1

Cache
private_count[0] }

Memory

Processor 2

Cache}

False sharing occurs when 2 or more threads modify different data items which
happen to be in the same cache line.

Solution: Have each private_count be in a separate cache line
Can interogate sys/systemcfg.h _system_configuration.dcache_block

Memory Address Bus

private_count[1]

private_count[0]

private_count[1]

private_count[0]
private_count[1]

Thread running on this
processor is modifying
private_count[0]

Thread running on this
processor is modifying
private_count[1]

Safest assumption: 128 byte cache line

Finding System Cache Size
#include <sys/systemcfg.h>
...
/* checking cache size */
int check_cache_size() {

int padding = 128;
if (_system_configuration_dcache_block <

128)
padding = 32;

return padding;
}

...

Solution for False Sharing
Allocate padding between private counters to avoid False
haring ...

struct count {
 int private_counter;
 char pad [124];
} counter [4];
...
/* count ones in region */
count [id]. counter = 0;
for (j=0;j<1000000;j++) {

 for (i = start; i < start + n_per_thread; i++) {
 if (vector [i] == 1)
 counter [id].private_count++;

}
}

 r = pthread_mutex_lock(&lock);
 count += counter [id].private_count;
 r = pthread_mutex_unlock(&lock);
...

Effects of Padding on
Performancen = 40 million

count = 25 million

Performance of 4
threads on a 4-way
SMP

Serial Data Race Contention False Shr Padded

1.43 sec

120 sec

0.36 sec

4.47 sec

.32 sec

Sample code - Atomic Add
Use System Provided fetch_and_add routine to increment
count" ...

int fetch_and_add (int *, int);
int c, org_value;
...

/* count ones in region */
c = 0;
for (j=0;j<1000000;j++) {
for (i = start; i < start + n_per_thread; i++) {

if (vector [i] == 1)
c++;

}
org_value = fetch_and_add (&count, c);

Effects of Atomic Lock
in Contention

n = 40 million
count = 25 million

Performance of 4
threads on a 4-way
SMP

Contention Atomic

120 sec

24 sec

AIX Atomic Routines

_check_lock ----> Compare the value in the atomic lock word (1st parameter)
with the comparator value (2nd parameter). If they are equal
then store the new value (3rd parameter) into the lock word
and return 0 for success, otherwise return 1 for failure.

boolean_t _check_lock (atomic_p, int, int)

_clear_lock ------> Stores the value (2nd parameter) into the atomic word
location (1st parameter)

void _clear_lock (atomic_p, int)

fetch_and_nop --> Atomically read a memory location.

int fetch_and_nop (atomic_p)

AIX Atomic Routines (cont)

fetch_and_add --> Atomically increment a memory location word
(counter). Returns the prior value in the memory
location.

int fetch_and_add (atomic_p, int)

fetch_and_add_h --> Atomically increment a memory location halfword
(counter). Returns the prior value in the memory
location.

ushort fetch_and_add (atomic_p, int)

test_and_set --> Atomically test and set a memory location using the
mask passed in the 2nd parameter.

boolean_t test_and_set (atomic_p, int)

AIX Atomic Routines (cont)

fetch_and_and --> Atomically AND bits in a memory location. Returns prior
value from memory location.

uint fetch_and_and (atomic_p, uint)

Fetch_and_or --> Atomically OR bits in a memory location. Returns prior
value from memory location.

ushort fetch_and_or (atomic_p, int)

compare_and_swap --> Compare the value in the atomic word (1st
parameter) with the original value passed (2nd
parameter). If they are equal then store the new
value (3rd parameter) into the atomic word and return
TRUE. Otherwise, the value in the atomic word (1st
parameter) is stored into the original value (2nd
parameter) and FALSE is returned.

boolean_t compare_and_swap (atomic_p, int *, int)

Avoiding Deadlocks
In AIX Mutexes cannot be re-locked by the same thread

Deadlocks occur when a mutex is locked & then a routine is called locking the same mutex:

pthread_mutex_t mutex;
struct {

int a;
int b;
int c;

} A;
f() {

pthread_mutex_lock (&mutex); /* call #1 */
A.a++.
g();
A.c = 0;
pthread_mutex_unlock(&mutex);

}
g() {

pthread_mutex_lock(&mutex); /* call #2
A.b += A.a;
pthread_mutex_unlock(&mtex); /* call #3 */

}

Avoiding Deadlocks (cont)

Deadlocks may also occur when mutexes are locked in reverse order

/* Thread A */
pthread_mutex_lock(&mutex1); time 0
pthread_mutex_lock(&mutex2); time 2

/* Thread B */
pthread_mutex_lock(&mutex2); time 1
pthread_mutex_lock(&mutex1); time 3

To avoid this, successive mutexes should be locked in the same order

Effects of waiting for Locks
cpu 0 cpu 1 cpu2 cpu3 lock busy

lock

unlock
wait
lock

unlock

wait
lock

wait
lock

unlock

unlock

If the Critical Section is 10% of the time, the
lock is busy 40% of the time on a 4-way SMP.

wait

When a lock is held by a process/thread all others must wait

There are several ways of waiting for a lock to become free
Spinning: The waiting thread loops repeatedly checking to see if the lock is free

Sleeping: The thread sleeps until the lock is free

Yielding: The thread yields the CPU until it gets dispatched again

Waiting always decreases system performance

The longer the lock is held the longer the wait

Waiting for Locks

Lock Granularity
lock unlock

L U L UL U

Critical Sections
Sections

convert to this

Reduce the amount of time that a lock is held
Reduce the size of what the lock is protecting
(granularity)
The CS should be limited to code that manipulates
the data
Locks should be associated with data items not
routines

Consider creating a custom lock for read-mostly data

Start with medium-to coarse grain locks; reduce if needed

Worry about tuning only if performance is unacceptable

Use profiling to find any bottlenecks

Find the locks with the longest wait time

Word align locks and put them in separate caches

Performance Tips for Locks

Never do :
synchronous I/O or any other blocking activity while holding a lock

Move all unnecessary code outside the Critical Section

Accesses to shared data should be:
combined if possible so they can be covered by a single lock/unlock

If you must hold 2 locks simultaneously:
request the busiest one last

Performance Tips for Locks

